光通信就是以光波為載波的通信。增加光路帶寬的方法有兩種:一是提高光纖的單信道傳輸速率;二是增加單光纖中傳輸?shù)牟ㄩL(zhǎng)數(shù),即波分復(fù)用技術(shù)(WDM)。
目前寬帶城域網(wǎng)(BMAN)正成為信息化建設(shè)的熱點(diǎn),DWDM(密集波分復(fù)用)的巨大帶寬和傳輸數(shù)據(jù)的透明性,無疑是當(dāng)今光纖應(yīng)用領(lǐng)域的首選技術(shù)。然而,MAN等具有傳輸距離短、拓?fù)潇`活和接入類型多等特點(diǎn),如照搬主要用于長(zhǎng)途傳輸?shù)腄WDM,必然成本過高;同時(shí)早期DWDM對(duì)MAN等靈活多樣性也難以適應(yīng)。面對(duì)這種低成本城域范圍的寬帶需求,CWDM(粗波分復(fù)用)技術(shù)應(yīng)運(yùn)而生,并很快成為一種實(shí)用性的設(shè)備。
對(duì)光通信來說,其技術(shù)基本成熟,而業(yè)務(wù)需求相對(duì)不足。以被譽(yù)為“寬帶接入最終目標(biāo)”的FTTH為例,其實(shí)現(xiàn)技術(shù)EPON已經(jīng)完全成熟,但由于普通用戶上網(wǎng)需要的帶寬不高,使FTTH的商用只限于一些試點(diǎn)地區(qū)。但是,在2006年,隨著IPTV等三重播放業(yè)務(wù)開展,運(yùn)營(yíng)商提供的帶寬已經(jīng)不能滿足用戶對(duì)高清晰電視的要求,隨之FTTH的部署也提上了日程。無獨(dú)有偶,ASON對(duì)傳輸網(wǎng)絡(luò)控制靈活,可為企業(yè)客戶提供個(gè)性化服務(wù),不少運(yùn)營(yíng)商為發(fā)展和維系企業(yè)客戶,不惜重金投資建設(shè)ASON。
全光網(wǎng)絡(luò)未來傳輸網(wǎng)絡(luò)的最終目標(biāo),是構(gòu)建全光網(wǎng)絡(luò),即在接入網(wǎng)、城域網(wǎng)、骨干網(wǎng)完全實(shí)現(xiàn)“光纖傳輸代替銅線傳輸”。而目前的一切研發(fā)進(jìn)展,都是“逼近”這個(gè)目標(biāo)的過程。
1960年7月8日,美國(guó)科學(xué)家梅曼發(fā)明了紅寶石激光器,從此人們便可獲得性質(zhì)和電磁波相似而頻率穩(wěn)定的光源。研究現(xiàn)代化光通信的時(shí)代也從此開始。激光器的英文簡(jiǎn)稱叫LASER,意思是“受激發(fā)射的光放大”。這種激光器產(chǎn)生的光與普通的燈光不一樣,它是受物質(zhì)原子結(jié)構(gòu)本質(zhì)決定的光,頻率穩(wěn)定,約為100太赫。這種光的頻率比已經(jīng)廣泛應(yīng)用的微波(頻率約為10兆赫)的頻率高1萬倍。因此,用這種光來傳送信息從理論上來說,通信的容量可以比微波通信的容量也大1萬倍!因此,激光器的發(fā)明對(duì)光通信的研究工作產(chǎn)生了重大的影響。但是最初發(fā)明的激光器在室溫下不能連續(xù)工作,因此,還不可能在通信中獲得實(shí)際應(yīng)用。
最基本的光纖通信系統(tǒng)由數(shù)據(jù)源、光發(fā)送端、光學(xué)信道和光接收機(jī)組成。其中數(shù)據(jù)源包括所有的信號(hào)源,它們是話音、圖象、數(shù)據(jù)等業(yè)務(wù)經(jīng)過信源編碼所得到的信號(hào);光發(fā)送機(jī)和調(diào)制器則負(fù)責(zé)將信號(hào)轉(zhuǎn)變成適合于在光纖上傳輸?shù)墓庑盘?hào),先后用過的光波窗口有0.85、1.31和1.55。光學(xué)信道包括最基本的光纖,還有中繼放大器EDFA等;而光學(xué)接收機(jī)則接收光信號(hào),并從中提取信息,然后轉(zhuǎn)變成電信號(hào),最后得到對(duì)應(yīng)的話音、圖象、數(shù)據(jù)等信息。下面是光通信系統(tǒng)圖。
光纖通信中的光波主要是激光,所以又叫做激光-光纖通信.光通信的原理是:在發(fā)送端首先要把傳送的信息(如話音)變成電信號(hào),然后調(diào)制到激光器發(fā)出的激光束上,使光的強(qiáng)度隨電信號(hào)的幅度(頻率)變化而變化,并通過...
可以看出,樓上對(duì)通信了解一些,不過也有不對(duì)的地方。首先,功率是使用w、kw、mw來表示,但光通信中主要使用dBm來表示,而不是也用!通信中定義,1mw的光功率為0dBm,而不是樓上的1dBm。樓上的表...
【光通信原理】光纖通信(Fiber-optic communication),也作光纖通訊。光纖通信是以光作為信息載體,以光纖作為傳輸媒介的通信方式,首先將電信號(hào)轉(zhuǎn)換成光信號(hào),再透過光纖將光信號(hào)進(jìn)行傳...
光通信光纖定律
隨著互聯(lián)網(wǎng)的發(fā)展,人們提出了網(wǎng)絡(luò)時(shí)代的三大定律:
第一定律:摩爾定律。
早在1964年,英特爾公司創(chuàng)始人戈登·摩爾(Gordon Moore)在一篇很短的論文里斷言:每18個(gè)月,集成電路的性能將提高一倍,而其價(jià)格將降低一半。這就是著名的摩爾定律。由此,微處理器的速度會(huì)每18個(gè)月翻一番。這就意味著每5年它的速度會(huì)快10倍,每10年會(huì)快100倍。同等價(jià)位的微處理器會(huì)越變?cè)娇?,同等速度的微處理器?huì)越變?cè)奖阋恕?梢韵胍?,在未來,世界各地的人不但都可以通過自己的計(jì)算機(jī)上網(wǎng),而且還可以通過他們的電視、電話、電子書和電子錢包上網(wǎng)。作為迄今為止半導(dǎo)體發(fā)展史上意義最深遠(yuǎn)的定律,摩爾定律被集成電路近40年的發(fā)展歷史準(zhǔn)確無誤地驗(yàn)證著。
第二定律:吉爾德定律。
喬治·吉爾德曾預(yù)測(cè),在未來25年,主干網(wǎng)的帶寬將每6個(gè)月增加一倍。其增長(zhǎng)速度超過摩爾定律預(yù)測(cè)的CPU增長(zhǎng)速度的3倍。今天,幾乎所有知名的電訊公司都在樂此不疲地鋪設(shè)纜線。當(dāng)帶寬變得足夠充裕時(shí),上網(wǎng)的代價(jià)也會(huì)下降。在美國(guó),今天已經(jīng)有很多的ISP向用戶提供免費(fèi)上網(wǎng)的服務(wù)。
第三定律:麥特卡爾夫定律。
以太網(wǎng)的發(fā)明人鮑勃·麥特卡爾夫告訴我們:網(wǎng)絡(luò)價(jià)值同網(wǎng)絡(luò)用戶數(shù)量的平方成正比。如果將機(jī)器聯(lián)成一個(gè)網(wǎng)絡(luò),在網(wǎng)絡(luò)上,每一個(gè)人可以看到所有其他人的內(nèi)容,100人每人能看到100人的內(nèi)容,所以效率是10000。10000人的效率就是100000000。
聯(lián)合國(guó)“1999世界電信論壇會(huì)議” 副主席約翰·羅斯 (John Roth)在10日論壇開幕演說時(shí)提出“新摩爾定律”――光纖定律,互聯(lián)網(wǎng)帶寬每9個(gè)月會(huì)增加一倍的容量,但成本降低一半,比晶片變革速度的每18個(gè)月還快。
摩爾定律(Moore's Law)用來形容半導(dǎo)體科技的快速變革,平均每18個(gè)月,晶片的容量會(huì)成長(zhǎng)一倍,成本卻減少一半;“光纖定律”(OpticalLaw)則用來形容網(wǎng)絡(luò)科技。左面是幾種關(guān)鍵技術(shù)的發(fā)展速度示意圖。
格式:pdf
大?。?span id="p3jtsrr" class="single-tag-height">37KB
頁(yè)數(shù): 5頁(yè)
評(píng)分: 4.8
1 學(xué) 號(hào) 激光加工技術(shù) 結(jié)課論文 激光通信技術(shù) 學(xué) 生 姓 名 班 級(jí) 指 導(dǎo) 教 師 成 績(jī)________________ 系 201年 月 日 2 激光通信技術(shù) 一、引言 空間激光通信是利用激光光束作為載波, 在自由空間如大氣、 外太空中直接 傳輸光信息的一種通信方式。開辟了全新的通信頻道使調(diào)制帶寬可以顯著增加、 傳輸速率及信息量大(最高可達(dá) 10G/min)、能把光功率集中在非常窄的光束中、 器件的尺寸、 重量、功耗都明顯降低、 各通信鏈路間的電磁干擾小、 保密性強(qiáng)并 且顯著減少地面基站。 二、激光通信發(fā)展現(xiàn)狀 上世紀(jì) 60 年代中期美國(guó)就開始實(shí)施空間光通信方面的研究計(jì)劃。美國(guó)國(guó)家 航空和宇航局 (NASA)的噴氣推進(jìn)實(shí)驗(yàn)室 (JPL)早在 70 年代就一直進(jìn)行衛(wèi)星激光 通信的研究工作, 其它如林肯、貝爾等著名實(shí)驗(yàn)室也都開展了空間激光鏈路的研 究。日本于 80年代中期開始空間
格式:pdf
大?。?span id="yuugy4z" class="single-tag-height">37KB
頁(yè)數(shù): 2頁(yè)
評(píng)分: 4.5
光通信之光纖適配器 (耦合器 )簡(jiǎn)介 光纖適配器 (Coupler)又稱分歧器 (Splitter)、連接器、耦合器、法蘭盤,是用于實(shí)現(xiàn)光信 號(hào)分路 /合路,或用于延長(zhǎng)光纖鏈路的元件,屬于光被動(dòng)元件領(lǐng)域,在電信網(wǎng)路、有線電視 網(wǎng)路、用戶回路系統(tǒng)、區(qū)域網(wǎng)路中都會(huì)應(yīng)用到。 光纖耦合器可分標(biāo)準(zhǔn)耦合器 (屬于波導(dǎo)式,雙分支,單位 1× 2,亦即將光訊號(hào)分成兩個(gè) 功率 )、直連式耦合器 (連接 2 條相同或不同類型光纖接口的光纖 ,以延長(zhǎng)光纖鏈路 )、星狀 /樹 狀耦合器、 以及波長(zhǎng)多工器 (WDM,若波長(zhǎng)屬高密度分出, 即波長(zhǎng)間距窄, 則屬于 DWDM), 制作方式則有燒結(jié) (Fuse)、微光學(xué)式 (Micro Optics)、光波導(dǎo)式 (Wave Guide)三種,而以燒結(jié)式 方法生產(chǎn)占多數(shù) (約有 90%)。 燒結(jié)方式的制作法,是將兩條光纖并在一起燒融拉伸,使核芯聚合一起,以達(dá)光耦合 作用,而
美國(guó)是世界上開展空間光通信最早的國(guó)家,主要研究部門是美國(guó)宇航局(NASA)和美國(guó)空軍。美國(guó)宇航局選擇噴氣推進(jìn)實(shí)驗(yàn)室(JetPulsionLab-JPL)進(jìn)行衛(wèi)星激光通信系統(tǒng)的研制,1995年完成了激光通信演示系統(tǒng)(LaserCommunicationDemonstrationSystems-LCDS),數(shù)據(jù)率為750Mbps。
該室目前正在進(jìn)行激光通信演示系統(tǒng)(OpticalCommunicationdemonstration-OCD)研究,主要進(jìn)行航天飛機(jī)與地面間通信鏈路的性能演示,傳輸速率為100Mbps。在工業(yè)界的資助下,JPL還正在開發(fā)500Mbps激光通信設(shè)備,已完成分析和設(shè)計(jì)工作,一些關(guān)鍵子系統(tǒng)也已研制成功,并正在進(jìn)行子系統(tǒng)的工程組裝工作。JPL目前還正在研制高功率(315W)Nd-YAG激光器、窄帶激光濾波器及地面和空間的激光衛(wèi)星跟蹤網(wǎng)絡(luò)。
此外,美國(guó)宇航局還支持JPL進(jìn)行其他衛(wèi)星通信計(jì)劃,如實(shí)現(xiàn)圖像功能的窄帶激光濾波器以及地面和空間的激光衛(wèi)星通信跟蹤網(wǎng)絡(luò)。 美國(guó)的戰(zhàn)略導(dǎo)彈防御組織(BMDO)也正在積極進(jìn)行空間激光通信的研制開發(fā)工作,該工程由空軍提供主要經(jīng)費(fèi),由MIT林肯實(shí)驗(yàn)室進(jìn)行有關(guān)關(guān)鍵技術(shù)和系統(tǒng)技術(shù)的研究?,F(xiàn)已研制出激光通信終端設(shè)備,并進(jìn)行了作用距離42km、信息率1Gbps、誤碼率Pe為10-6的全天候跟瞄實(shí)驗(yàn)。
林肯實(shí)驗(yàn)室還研制出了窄帶并且具有空間搜索和跟蹤功能、達(dá)到量子限的收發(fā)光端機(jī),該端機(jī)采用單模光纖進(jìn)行內(nèi)部連接。新近又研制出藍(lán)綠光接收系統(tǒng)的快速原子諧振濾波器,相關(guān)合成技術(shù)的光多孔排列裝置,寬角多址系統(tǒng)的碼分多址技術(shù),高功率(315W)半導(dǎo)體激光功率放大器,1~2Gbps高速編碼芯片,摻鉺光纖功放/發(fā)信機(jī),10Gbps高速調(diào)制器和具有近量子
全光通信技術(shù)技術(shù)
全光通信的實(shí)現(xiàn)將使上述問題迎刃而解。實(shí)現(xiàn)透明的、具有高度生存性的全光通信網(wǎng)是寬帶通信網(wǎng)未來發(fā)展目標(biāo),而要實(shí)現(xiàn)這樣的目標(biāo)需要有先進(jìn)的技術(shù)來支撐,下面就是實(shí)現(xiàn)準(zhǔn)確、有效、可靠的全光通信應(yīng)采用的技術(shù):
1、光層開銷處理技術(shù):該技術(shù)是用信道開銷等額外比特?cái)?shù)據(jù)從外面包裹Och客戶信號(hào)的一種數(shù)字包封技術(shù),它能在光層具有管理光信道(Och)的OAM(操作、管理、維護(hù))信息的能力和執(zhí)行光信道性能監(jiān)測(cè)的能力,該技術(shù)同時(shí)為光網(wǎng)絡(luò)提供所有SONET/SDH網(wǎng)所具有的強(qiáng)大管理功能和高可靠性保證。
2、光監(jiān)控技術(shù):在全光通信系統(tǒng)中,必須對(duì)光放大器等器件進(jìn)行監(jiān)視和管理。一般技術(shù)采用額外波長(zhǎng)監(jiān)視技術(shù),即在系統(tǒng)中再分插一個(gè)額外的信道傳送監(jiān)控信息。而光監(jiān)控技術(shù)采用1510nm波長(zhǎng),并且對(duì)此監(jiān)控信道提供ECC的保護(hù)路由,當(dāng)光纜出現(xiàn)故障時(shí),可繼續(xù)通過數(shù)據(jù)通信網(wǎng)(DCN)傳輸監(jiān)控信息。
3、信息再生技術(shù):大家知道,信息在光纖通道中傳輸時(shí),如果光纖損耗大和色散嚴(yán)重將會(huì)導(dǎo)致最后的通信質(zhì)量很差,損耗導(dǎo)致光信號(hào)的幅度隨傳輸距離按指數(shù)規(guī)律衰減,這可以通過全光放大器來提高光信號(hào)功率。色散會(huì)導(dǎo)致光脈沖發(fā)生展寬,發(fā)生碼間干擾,使系統(tǒng)的誤碼率增大,嚴(yán)重影響了通信質(zhì)量。因此,必須采取措施對(duì)光信號(hào)進(jìn)行再生。目前,對(duì)光信號(hào)的再生都是利用光電中繼器,即光信號(hào)首先由光電二極管轉(zhuǎn)變?yōu)殡娦盘?hào),經(jīng)電路整形放大后,再重新驅(qū)動(dòng)一個(gè)光源,從而實(shí)現(xiàn)光信號(hào)的再生。這種光電中繼器具有裝置復(fù)雜、體積大、耗能多的缺點(diǎn)。而最近,出現(xiàn)了全光信息再生技術(shù),即在光纖鏈路上每隔幾個(gè)放大器的距離接入一個(gè)光調(diào)制器和濾波器,從鏈路傳輸?shù)墓庑盘?hào)中提取同步時(shí)鐘信號(hào)輸入到光調(diào)制器中,對(duì)光信號(hào)進(jìn)行周期性同步調(diào)制,使光脈沖變窄、頻譜展寬、頻率漂移和系統(tǒng)噪聲降低,光脈沖位置得到校準(zhǔn)和重新定時(shí)。全光信息再生技術(shù)不僅能從根本上消除色散等不利因素的影響,而且克服了光電中繼器的缺點(diǎn),成為全光信息處理的基礎(chǔ)技術(shù)之一。
4、動(dòng)態(tài)路由和波長(zhǎng)分配技術(shù):給定一個(gè)網(wǎng)絡(luò)的物理拓?fù)浜鸵惶仔枰诰W(wǎng)絡(luò)上建立的端到端光信道,而為每一個(gè)帶寬請(qǐng)求決定路由和分配波長(zhǎng)以建立光信道的問題也就是波長(zhǎng)選路由和波長(zhǎng)分配問題(RWA)。目前較成熟的技術(shù)有最短路徑法、最少負(fù)荷法和交替固定選路法等。根據(jù)節(jié)點(diǎn)是否提供波長(zhǎng)轉(zhuǎn)換功能,光通路可以分為波長(zhǎng)通道(WP)和虛波長(zhǎng)通道(VWP)。WP可看作VMP的特例,當(dāng)整個(gè)光路都采用同一波長(zhǎng)時(shí)就稱其為波長(zhǎng)通道反之是虛波長(zhǎng)通道。在波長(zhǎng)通道網(wǎng)絡(luò)中,由于給信號(hào)分配的波長(zhǎng)通道是端到端的,每個(gè)通路與一個(gè)固定的波長(zhǎng)關(guān)聯(lián),因而在動(dòng)態(tài)路由和分配波長(zhǎng)時(shí)一般必須獲得整個(gè)網(wǎng)絡(luò)的狀態(tài),因此其控制系統(tǒng)通常必須采用集中控制方式,即在掌握了整個(gè)網(wǎng)絡(luò)所有波長(zhǎng)復(fù)用段的占用情況后,才可能為新呼叫選一條合適的路由。這時(shí)網(wǎng)絡(luò)動(dòng)態(tài)路由和波長(zhǎng)分配所需時(shí)間相對(duì)較長(zhǎng)。而在虛波長(zhǎng)通道網(wǎng)絡(luò)中,波長(zhǎng)是逐個(gè)鏈路進(jìn)行分配的,因此可以進(jìn)行分布式控制,這樣可以大大降低光通路層選路的復(fù)雜性和選路所需的時(shí)間但卻增加了節(jié)點(diǎn)操作的復(fù)雜性。由于波長(zhǎng)選路所需的時(shí)間較長(zhǎng),近期提出了一種基于波長(zhǎng)作為標(biāo)記的多協(xié)議波長(zhǎng)標(biāo)記交換(MPLS)的方案,它將光交叉互聯(lián)設(shè)備視為標(biāo)記交換路由器進(jìn)行網(wǎng)絡(luò)控制和管理。在基于MPLS的光波長(zhǎng)標(biāo)記交換網(wǎng)絡(luò)中的光路由器有兩種:邊界路由器和核心路由器。邊界路由器用于與速率較低的網(wǎng)絡(luò)進(jìn)行業(yè)務(wù)接入,同時(shí)電子處理功能模塊完成MPLS中較復(fù)雜的標(biāo)記處理功能,而核心路由器利用光互聯(lián)和波長(zhǎng)變換技術(shù)實(shí)現(xiàn)波長(zhǎng)標(biāo)記交換和上下路等比較簡(jiǎn)單的光信號(hào)處理功能。它可以更靈活地管理和分配網(wǎng)絡(luò)資源,并能較有效地實(shí)現(xiàn)業(yè)務(wù)管理及網(wǎng)絡(luò)的保護(hù)、恢復(fù)。
5、光時(shí)分多址(OTDMA)技術(shù):該技術(shù)是在同一光載波波長(zhǎng)上,把時(shí)間分割成周期性的幀,每一個(gè)幀再分割成若干個(gè)時(shí)隙(無論幀或時(shí)隙都是互不重疊的),然后根據(jù)一定的時(shí)隙分配原則,使每個(gè)光網(wǎng)絡(luò)單元(ONU)在每幀內(nèi)只按指定的時(shí)隙發(fā)送信號(hào),然后利用全光時(shí)分復(fù)用方法在光功率分配器中合成一路光時(shí)分脈沖信號(hào),再經(jīng)全光放大器放大后送入光纖中傳輸。在交換局,利用全光時(shí)分分解復(fù)用。為了實(shí)現(xiàn)準(zhǔn)確,可靠的光時(shí)分多址通信,避免各ONU向上游發(fā)送的碼流在光功率分配器合路時(shí)可能發(fā)生碰撞,光交換局必須測(cè)定它與各ONU的距離,井在下行信號(hào)中規(guī)定光網(wǎng)絡(luò)單元(ONU)的嚴(yán)格發(fā)送定時(shí)。
6、光突發(fā)數(shù)據(jù)交換技術(shù):該技術(shù)是針對(duì)目前光信號(hào)處理技術(shù)尚未足夠成熟而提出的,在這種技術(shù)中有兩種光分組技術(shù):包含路由信息的控制分組技術(shù)和承載業(yè)務(wù)的數(shù)據(jù)分組技術(shù)。控制分組技術(shù)中的控制信息要通過路由器的電子處理,而數(shù)據(jù)分組技術(shù)不需光電/電光轉(zhuǎn)換和電子路由器的轉(zhuǎn)發(fā),直接在端到端的透明傳輸信道中傳輸。
7、光波分多址(WDMA)技術(shù):該技術(shù)是將多個(gè)不同波長(zhǎng)且互不交疊的光載波分配給不同的光網(wǎng)絡(luò)單元(ONU),用以實(shí)現(xiàn)上行信號(hào)的傳輸,即各ONU根據(jù)所分配的光載波對(duì)發(fā)送的信息脈沖進(jìn)行調(diào)制,從而產(chǎn)生多路不同波長(zhǎng)的光脈沖,然后利用波分復(fù)用方法經(jīng)過合波器形成一路光脈沖信號(hào)來共享傳輸光纖并送入到光交換局。在WDMA系統(tǒng)中為了實(shí)現(xiàn)任何允許節(jié)點(diǎn)共享信道的多波長(zhǎng)接入,必須建立一個(gè)防止或處理碰撞的協(xié)議,該協(xié)議包括固定分配協(xié)議、隨機(jī)接入?yún)f(xié)議(包括預(yù)留機(jī)制、交換和碰撞預(yù)留技術(shù))及仲裁規(guī)程和改裝發(fā)送許可等。
8、光轉(zhuǎn)發(fā)技術(shù):在全光通信系統(tǒng)中,對(duì)光信號(hào)的波長(zhǎng)、色散和功率等都有特殊的要求,為了滿足ITU-T標(biāo)準(zhǔn)規(guī)范,必須采用光-電-光的光轉(zhuǎn)發(fā)技術(shù)對(duì)輸入的信號(hào)光進(jìn)行規(guī)范,同時(shí)采用外調(diào)制技術(shù)克服長(zhǎng)途傳輸系統(tǒng)中色散的影響。光纖傳輸系統(tǒng)所用的光轉(zhuǎn)發(fā)模塊主要有直接調(diào)制的光轉(zhuǎn)發(fā)模塊和外調(diào)制的光轉(zhuǎn)發(fā)模塊兩種。外調(diào)制的光轉(zhuǎn)發(fā)模塊包括電吸收(EA)調(diào)制和LiNbO3調(diào)制等。在光纖傳輸系統(tǒng)中,選用那種光發(fā)模塊要根據(jù)實(shí)際傳輸距離和光纖的色散情況而定。在全光通信系統(tǒng)中,可以采用多種調(diào)制類型的光轉(zhuǎn)發(fā)模塊,色散容限有1800/4000/7200/12800ps/nm等諸多選擇,滿足不同的傳輸距離的需求,為用戶提供從1km至640km各種傳輸距離的最佳性能價(jià)格比解決方案,并且光轉(zhuǎn)發(fā)單元發(fā)射部分的波長(zhǎng)穩(wěn)定度在0~60°C范圍內(nèi)小于±3GHz。
9、副載波多址(SCMA)技術(shù):該技術(shù)的基本原理是將多路基帶控制信號(hào)調(diào)制到不同頻率的射頻(超短波到微波頻率)波上,然后將多路射頻信號(hào)復(fù)用后再去調(diào)制一個(gè)光載波。在ONU端進(jìn)行二次解調(diào),首先利用光探測(cè)器從光信號(hào)中得到多路射頻信號(hào),并從中選出該單元需要接收的控制信號(hào),再用電子學(xué)的方法從射頻波中恢復(fù)出基帶控制信號(hào)。在控制信道上使用SCMA接入,不僅可降低網(wǎng)絡(luò)成本,還可解決控制信道的競(jìng)爭(zhēng)。
10、空分光交換技術(shù):該技術(shù)的基本原理是將光交換元件組成門陣列開關(guān),并適當(dāng)控制門陣列開關(guān),即可在任一路輸入光纖和任一輸出光纖之間構(gòu)成通路。因其交換元件的不同可分為機(jī)械型、光電轉(zhuǎn)換型、復(fù)合波導(dǎo)型、全反射型和激光二極管門開關(guān)等,如耦合波導(dǎo)型交換元件鑰酸鉀,它是一種電光材料,具有折射率隨外界電場(chǎng)的變化而發(fā)生變化的光學(xué)特性。以鈮酸鉀為基片,在基片上進(jìn)行鈦擴(kuò)散,以形成折射率逐漸增加的光波導(dǎo),即光通路,再焊上電極后即可將它作為光交換元件使用。當(dāng)將兩條很接近的波導(dǎo)進(jìn)行適當(dāng)?shù)膹?fù)合,通過這兩條波導(dǎo)的光束將發(fā)生能量交換。能量交換的強(qiáng)弱隨復(fù)合系數(shù)。平行波導(dǎo)的長(zhǎng)度和兩波導(dǎo)之間的相位差變化,只要所選取的參數(shù)適當(dāng),光束就在波導(dǎo)上完全交錯(cuò),如果在電極上施加一定的電壓,可改變折射率及相位差。由此可見,通過控制電極上的電壓,可以得到平行和交叉兩種交換狀態(tài)。
11、光放大技術(shù):為了克服光纖傳輸中的損耗,每傳輸一段距離,都要對(duì)信號(hào)進(jìn)行電的“再生”。隨著傳輸碼率的提高,“再生”的難度也隨之提高,成了信號(hào)傳輸容量擴(kuò)大的“瓶頸”。于是一種新型的光放大技術(shù)就出現(xiàn)了,例如摻鉺光纖放大器的實(shí)用化實(shí)現(xiàn)了直接光放大,節(jié)省了大量的再生中繼器,使得傳輸中的光纖損耗不再成為主要問題,同時(shí)使傳輸鏈路“透明化”,簡(jiǎn)化了系統(tǒng),成幾倍或幾十倍地?cái)U(kuò)大了傳輸容量,促進(jìn)了真正意義上的密集波分復(fù)用技術(shù)的飛速發(fā)展,是光纖通訊領(lǐng)域上的一次革命。
12、時(shí)分光交換技術(shù):該技術(shù)的原理與現(xiàn)行的電子程控交換中的時(shí)分交換系統(tǒng)完全相同,因此它能與采用全光時(shí)分多路復(fù)用方法的光傳輸系統(tǒng)匹配。在這種技術(shù)下,可以時(shí)分復(fù)用各個(gè)光器件,能夠減少硬件設(shè)備,構(gòu)成大容量的光交換機(jī)。該技術(shù)組成的通信技術(shù)網(wǎng)由時(shí)分型交換模塊和空分型交換模塊構(gòu)成。它所采用的空分交換模塊與上述的空分光交換功能塊完全相同,而在時(shí)分型光交換模塊中則需要有光存儲(chǔ)器(如光纖延遲存儲(chǔ)器、雙穩(wěn)態(tài)激光二極管存儲(chǔ)器)、光選通器(如定向復(fù)合型陣列開關(guān))以進(jìn)行相應(yīng)的交換。
13、無源光網(wǎng)技術(shù)(PON):無源光網(wǎng)技術(shù)多用于接入網(wǎng)部分。它以點(diǎn)對(duì)多點(diǎn)方式為光線路終端(OLT)和光網(wǎng)絡(luò)單元(ONU)P這間提供光傳輸媒質(zhì),而這又必須使用多址接入技術(shù)。目前使用中的有時(shí)分多址接入(TDMA)、波分復(fù)用(WDM)、副載波多址接入(SCMA)3種方式。PON中使用的無源光器件有光纖光纜、光纖接頭、光連接器、光分路器、波分復(fù)用器和光衰減器。拓?fù)浣Y(jié)構(gòu)可采用總線形、星形、樹形等多種結(jié)構(gòu)。
全光通信網(wǎng)的概念圖如圖1所示。由圖可見,這種網(wǎng)絡(luò)內(nèi)部是透明的光網(wǎng)絡(luò),能容納多種業(yè)務(wù)格式。網(wǎng)絡(luò)節(jié)點(diǎn)可以通過選擇合適的波長(zhǎng)進(jìn)行透明的發(fā)送或接收。通過對(duì)光交叉連接(0XC)的適當(dāng)配置,可以進(jìn)一步擴(kuò)展透明光傳輸?shù)木嚯x。在全光網(wǎng)的外部還有一個(gè)通用網(wǎng)絡(luò)控制部分,用來實(shí)現(xiàn)網(wǎng)絡(luò)的重構(gòu),使得波長(zhǎng)和容量能在整個(gè)網(wǎng)絡(luò)內(nèi)進(jìn)行動(dòng)態(tài)分配,以適應(yīng)通信和業(yè)務(wù)性能不斷變化的需要。
全光網(wǎng)絡(luò)的基本結(jié)構(gòu)如圖2所示。按照分層的概念,全光網(wǎng)絡(luò)一般由業(yè)務(wù)層、適配層和光層組成。而光傳輸網(wǎng)又可以垂直劃分為3個(gè)獨(dú)立的網(wǎng)絡(luò)層,即光通路層、光復(fù)用段層和光傳輸段層。光通路層為透明傳輸各種不同格式的客戶層信號(hào)的光通路提供端到端的聯(lián)網(wǎng)功能;光復(fù)用段層為多波長(zhǎng)光信號(hào)提供聯(lián)網(wǎng)功能;光傳輸段層為光信號(hào)提供在各種不同類型的光傳輸媒質(zhì)中傳輸?shù)墓δ堋U麄€(gè)光傳輸網(wǎng)由光纖構(gòu)成的物理媒質(zhì)層所支持。
全光網(wǎng)絡(luò)由于從端到端采用透明的光通路連接,因而具有結(jié)構(gòu)簡(jiǎn)單、便于維護(hù)、可靠性高以及具有網(wǎng)絡(luò)可擴(kuò)展性等優(yōu)點(diǎn);它以波長(zhǎng)選擇路由,對(duì)傳輸碼率、數(shù)據(jù)格式及調(diào)制方式均具有透明性,可提供多種協(xié)議的業(yè)務(wù)。此外,由于它能根據(jù)業(yè)務(wù)量需求的變化改變網(wǎng)絡(luò)結(jié)構(gòu),具有網(wǎng)絡(luò)的可重組性,因而有利于網(wǎng)絡(luò)資源的充分利用。
圖1全光網(wǎng)絡(luò)概念圖
圖2全光網(wǎng)絡(luò)的基本結(jié)構(gòu)
NMS:網(wǎng)絡(luò)管理系統(tǒng)
EMS:網(wǎng)元管理系統(tǒng)
TM:終端復(fù)用
WDM:波分復(fù)用器
OADM:光分插復(fù)用器
OXC:光交叉連接
光通信就是以光波為載波的通信。增加光路帶寬的方法有兩種:一是提高光纖的單信道傳輸速率;二是增加單光纖中傳輸?shù)牟ㄩL(zhǎng)數(shù),即波分復(fù)用技術(shù)(WDM)事實(shí)上,光通信設(shè)備只適合在最后幾公里的距離用。
對(duì)光通信來說,其技術(shù)基本成熟,而業(yè)務(wù)需求相對(duì)不足。以被譽(yù)為“寬帶接入最終目標(biāo)”的FTTH為例,其實(shí)現(xiàn)技術(shù)EPON已經(jīng)完全成熟,但由于普通用戶上網(wǎng)需要的帶寬不高,使FTTH的商用只限于一些試點(diǎn)地區(qū)。但是,在2006年,隨著IPTV等三重播放業(yè)務(wù)開展,運(yùn)營(yíng)商提供的帶寬已經(jīng)不能滿足用戶對(duì)高清晰電視的要求,隨之FTTH的部署也提上了日程。無獨(dú)有偶,ASON對(duì)傳輸網(wǎng)絡(luò)控制靈活,可為企業(yè)客戶提供個(gè)性化服務(wù),不少運(yùn)營(yíng)商為發(fā)展和維系企業(yè)客戶,不惜重金投資建設(shè)ASON。