1 矩陣A可逆的充要條件是A的行列式不等于0。

2 可逆矩陣一定是方陣。

3 如果矩陣A是可逆的,A的逆矩陣是唯一的。

4 可逆矩陣也被稱為非奇異矩陣、滿秩矩陣。

5 兩個可逆矩陣的乘積依然可逆。

6 可逆矩陣的轉(zhuǎn)置矩陣也可逆。

7 矩陣可逆當且僅當它是滿秩矩陣。

逆矩陣造價信息

市場價 信息價 詢價
材料名稱 規(guī)格/型號 市場價
(除稅)
工程建議價
(除稅)
行情 品牌 單位 稅率 供應商 報價日期
矩陣 產(chǎn)品說明:6.5G帶寬,支持EDID讀寫,支持DVI-D格式,面板/紅外/RS-232控制;品種:數(shù)字矩陣;型號:DH-DVI16-16B;類型:視頻;規(guī)格:16入/16出 查看價格 查看價格

東華盛業(yè)

13% 深圳市東華盛業(yè)科技有限公司重慶銷售處
矩陣 產(chǎn)品說明:6.5G帶寬,支持EDID讀寫,支持DVI-D格式,面板/紅外/RS-232控制;品種:數(shù)字矩陣;型號:DH-DVI16-8B;類型:視頻;規(guī)格:16入/8出 查看價格 查看價格

東華盛業(yè)

13% 深圳市東華盛業(yè)科技有限公司重慶銷售處
矩陣 產(chǎn)品說明:6.5G帶寬,支持EDID讀寫,支持DVI-D格式,面板/紅外/RS-232控制;品種:數(shù)字矩陣;型號:DH-DVI16-4B;類型:視頻;規(guī)格:16入/4出 查看價格 查看價格

東華盛業(yè)

13% 深圳市東華盛業(yè)科技有限公司重慶銷售處
矩陣 產(chǎn)品說明:6.5G帶寬,支持EDID讀寫,支持DVI-D格式,面板/紅外/RS-232控制;品種:數(shù)字矩陣;型號:DH-DVI8-16B;類型:視頻;規(guī)格:8入/16出 查看價格 查看價格

東華盛業(yè)

13% 深圳市東華盛業(yè)科技有限公司重慶銷售處
矩陣 產(chǎn)品說明:6.5G帶寬,支持EDID讀寫,支持DVI-D格式,面板/紅外/RS-232控制;品種:數(shù)字矩陣;型號:DH-DVI4-8B;類型:視頻;規(guī)格:4入/8出 查看價格 查看價格

東華盛業(yè)

13% 深圳市東華盛業(yè)科技有限公司重慶銷售處
矩陣 產(chǎn)品說明:6.5G帶寬,支持EDID讀寫,支持DVI-D格式,面板/紅外/RS-232控制;品種:數(shù)字矩陣;型號:DH-DVI12-32B;類型:視頻;規(guī)格:12入/32出 查看價格 查看價格

東華盛業(yè)

13% 深圳市東華盛業(yè)科技有限公司重慶銷售處
矩陣 產(chǎn)品說明:6.5G帶寬,支持EDID讀寫,支持DVI-D格式,面板/紅外/RS-232控制;品種:數(shù)字矩陣;型號:DH-DVI8-4B;類型:視頻;規(guī)格:8入/4出 查看價格 查看價格

東華盛業(yè)

13% 深圳市東華盛業(yè)科技有限公司重慶銷售處
矩陣 產(chǎn)品說明:6.5G帶寬,支持EDID讀寫,支持DVI-D格式,面板/紅外/RS-232控制;品種:數(shù)字矩陣;型號:DH-DVI8-16B;類型:視頻;規(guī)格:8入/16出 查看價格 查看價格

東華盛業(yè)

13% 深圳市東華盛業(yè)科技有限公司青海直銷
材料名稱 規(guī)格/型號 除稅
信息價
含稅
信息價
行情 品牌 單位 稅率 地區(qū)/時間
性質(zhì)感裝飾涂料 查看價格 查看價格

kg 韶關市2019年4月信息價
性質(zhì)感裝飾涂料 查看價格 查看價格

kg 韶關市2019年3月信息價
性質(zhì)感裝飾涂料 查看價格 查看價格

kg 韶關市2009年11月信息價
性質(zhì)感裝飾涂料 查看價格 查看價格

kg 韶關市2009年9月信息價
性質(zhì)感裝飾涂料 查看價格 查看價格

kg 韶關市2008年6月信息價
性質(zhì)感裝飾涂料 查看價格 查看價格

kg 韶關市2008年3月信息價
性質(zhì)感裝飾涂料 查看價格 查看價格

kg 韶關市2007年10月信息價
性質(zhì)感裝飾涂料 查看價格 查看價格

kg 韶關市2007年9月信息價
材料名稱 規(guī)格/需求量 報價數(shù) 最新報價
(元)
供應商 報價地區(qū) 最新報價時間
滲透膜 20000G 滲透(RO膜)|2根 1 查看價格 深圳安貝康水處理設備技術開發(fā)有限公司    2015-04-15
性質(zhì)感涂料 性質(zhì)感涂料|3800kg 5 查看價格 廣州合漆成裝飾涂料有限公司 廣東  陽江市 2022-08-30
矩陣 AV0808矩陣|9416臺 4 查看價格 廣州艾索電子產(chǎn)品有限公司 廣東  廣州市 2015-08-25
多樂士柔性質(zhì)感涂料A196 多樂士柔性質(zhì)感涂料A196|1800m2 1 查看價格 東莞市鴻銘建筑裝飾工程有限公司 廣東  深圳市 2016-12-01
矩陣 HDMI矩陣,網(wǎng)絡音頻媒體矩陣32*32|1臺 1 查看價格 廣州博翱電子有限公司 廣東  江門市 2016-10-09
VGA矩陣 VGA矩陣|1臺 1 查看價格 廣州市東巨信息科技有限公司 廣東  韶關市 2012-05-16
AV矩陣 AV矩陣|1臺 1 查看價格 廣州市東巨信息科技有限公司 廣東  韶關市 2012-05-16
VGA矩陣 VGA矩陣|7.0臺 3 查看價格 廣州邦實信息科技有限公司    2017-08-25

A^(-1)=(1/|A|)×A* ,其中A^(-1)表示矩陣A的逆矩陣,其中|A|為矩陣A的行列式,A*為矩陣A的伴隨矩陣。

逆矩陣的另外一種常用的求法:

(A|E)經(jīng)過初等變換得到(E|A^(-1))。

注意:初等變化只用行(列)運算,不能用列(行)運算。E為單位矩陣。

一般計算中,或者判斷中還會遇到以下11種情況來判斷是否為可逆矩陣:

1 秩等于行數(shù)

2 行列式不為0

3 行向量(或列向量)是線性無關組

4 存在一個矩陣,與它的乘積是單位陣

5 作為線性方程組的系數(shù)有唯一解

6 滿秩

7 可以經(jīng)過初等行變換化為單位矩陣

8 伴隨矩陣可逆

9 可以表示成初等矩陣的乘積

10 它的轉(zhuǎn)置矩陣可逆

11 它去左(右)乘另一個矩陣,秩不變

A是可逆矩陣的充分必要條件是∣A∣≠0,即可逆矩陣就是非奇異矩陣。(當∣A∣=0時,A稱為奇異矩陣)

逆矩陣性質(zhì)常見問題

  • HDMI矩陣

    現(xiàn)在市場的價格戰(zhàn)太離譜了,導致很多的商家都必須用低價來吸引客戶,所以產(chǎn)品質(zhì)量往往都得不到保障。力弘(LHLEEHAM)提供全系列會議視聽系統(tǒng)矩陣切換控制器,包含產(chǎn)品有同軸矩陣系列AHD/TVI...

  • 數(shù)字矩陣與網(wǎng)絡矩陣

    樓上恐怕還是不大了解,數(shù)字矩陣首先信號是數(shù)字信號,數(shù)字信號包括:SDI(標清)、HD-SDI(高清)這兩種以前都是廣播級信號,都是在廣播電視應用的,但是現(xiàn)在隨著電視會議的發(fā)展,已經(jīng)出現(xiàn)高清電視會議系統(tǒng)...

  • vga視頻矩陣,vga視頻矩陣價格?

    vga視頻矩陣,啟耀科技有4,8,16,24,32,48,64路,您需要哪一路,每一路的價格不一樣,輸入輸出路數(shù)越多價格越高,這種會議室用的很多的,切換很方便。

inv(a)或a^-1。

例如:

>> a =

8 4 9

2 3 5

7 6 1

>> a^-1

ans =

0.1636 -0.3030 0.0424

-0.2000 0.3333 0.1333

0.0545 0.1212 -0.0970

>> inv(a)

ans =

0.1636 -0.3030 0.0424

-0.2000 0.3333 0.1333

0.0545 0.1212 -0.0970

以下是對MATLAB中Inv用法的解釋。

原文(來自matlab help doc)

In practice, it is seldom necessary to form the explicit inverse of a matrix. A frequent misuse of inv

arises when solving the system of linear equations Ax=B .

One way to solve this is with x = inv(A)*B.A better way, from both an execution time and numerical accuracy standpoint,is to use the matrix division operator x = A\b.

實際上,很少需要矩陣逆的精確值。在解方程 Ax=B的時候可以使用x = inv(A)*B,

但通常我們求解這種形式的線性方程時,不必要求出A的逆矩陣,在MATLAB中精度更高,速度更快的方法是用左除--x = A\b。

另外,用LU分解法的速度更快,只是要多寫一條LU分解語句。

速度可以通過matlab中tic和toc來估算運行的時間。

逆矩陣性質(zhì)文獻

矩陣函數(shù)和函數(shù)矩陣 矩陣函數(shù)和函數(shù)矩陣

格式:pdf

大?。?span id="5olyl5c" class="single-tag-height">112KB

頁數(shù): 6頁

評分: 4.4

矩陣函數(shù)求導 首先要區(qū)分兩個概念:矩陣函數(shù)和函數(shù)矩陣 (1) 函數(shù)矩陣 ,簡單地說就是多個一般函數(shù)的陣列, 包括單變量和多變量函數(shù)。 函數(shù)矩陣的求導和積分是作用在各個矩陣元素上,沒有更多的規(guī)則。 單變量函數(shù)矩陣的微分與積分 考慮實變量 t 的實函數(shù)矩陣 ( )( ) ( )ij m nX t x t ×= ,所有分量函數(shù) ( )ijx t 定義域相同。 定義函數(shù)矩陣的微分與積分 0 0 ( ) ( ) , ( ) ( ) . t t ij ijt t d d X t x t X d x d dx dx τ τ τ τ ? ? ? ??? ???= =? ??? ?? ?? ? ?? ?∫ ∫ 函數(shù)矩陣的微分有以下性質(zhì): (1) ( )( ) ( ) ( ) ( )d d dX t Y t X t Y t dt dt dt + = + ; (2) ( ) ( ) ( )( ) ( ) ( )

立即下載
矩陣 矩陣

格式:pdf

大?。?span id="pnhiuxi" class="single-tag-height">112KB

頁數(shù): 5頁

評分: 4.7

第五章 矩 陣 §5.1 矩陣的運算 1.計算 421 421 421 963 642 321 ; 412 503 310 231 4102 2013 ; n n b b b aaa 2 1 21 ,,, ; n n bbb a a a ,, 21 2 1 ; 113 210 121 121 011 132 113 210 121 . 2.證明,兩個矩陣 A 與 B 的乘積 AB 的第 i 行等于 A 的第 i 行右乘以 B, 第 j 列等于 B的第 j 列左乘以 A. 3.可以按下列步驟證明矩陣的乘法滿足結(jié)合律: (i) 設 B=( ijb )是一個 n p矩陣.令 j = njj bjbb ,,2,1 是 B的第 j 列, j=1,2,? ,p. 又 設 pxxx ,,, 21 是 任 意 一 個 p 1 矩 陣 . 證 明 : B = ppxxx 211 . (ii)設 A 是一個

立即下載

函數(shù)返回一個與A的轉(zhuǎn)置矩陣A' 同型的矩陣X,并且滿足:AXA=A,XAX=X.此時,稱矩陣X為矩陣A的偽逆,也稱為廣義逆矩陣。pinv(A)具有inv(A)的部分特性,但不與inv(A)完全等同。 如果A為非奇異方陣,pinv(A)=inv(A),但卻會耗費大量的計算時間,相比較而言,inv(A)花費更少的時間。

《廣義逆矩陣的理論與方法》除了介紹廣義逆矩陣的一些基本知識外,主要反映在前述關于廣義逆矩陣的理論、計算與應用的諸多方面的新成果。并將《廣義逆矩陣的理論與方法》奉獻給有志于廣義逆矩陣的學習與研究的讀者,以期對廣義逆矩陣研究的進一步發(fā)展有所裨益?!稄V義逆矩陣的理論與方法》可以作為高等院校數(shù)學、計算數(shù)學、應用數(shù)學等專業(yè)高年級學生與研究生的一學期用教材(約60學時),也可供高校其他專業(yè)師生與工程技術人員自學參考之用。

《廣義逆矩陣及其應用》系統(tǒng)地論述廣義逆矩陣的理論、方法和應用。全書共分十章。第一章引進了廣義逆矩陣的定義,介紹了歷史發(fā)展概況。第二章從適于《廣義逆矩陣及其應用》討論的角度概述了矩陣論中的若干預備知識。接下來的六章系統(tǒng)地討論了由Moore Penrose方程所定義的各種廣義逆的性質(zhì)、不等式、計算方法及一些直接應用。最后兩章介紹廣義逆在概率統(tǒng)計、數(shù)學規(guī)劃、數(shù)值計算和網(wǎng)絡理論等學科的應用。書后附有百余篇參考文獻。

《廣義逆矩陣及其應用》讀者對象為高等院校數(shù)學、物理、工程、經(jīng)濟等有關專業(yè)的教師、高年級學生和研究生,也可供所有使用矩陣這一數(shù)學工具的廣大科技工作者閱讀.

逆矩陣相關推薦
  • 相關百科
  • 相關知識
  • 相關專欄