書(shū)????名 | 有限元方法固體力學(xué)和結(jié)構(gòu)力學(xué) | 頁(yè)????數(shù) | 631頁(yè) |
---|---|---|---|
出版社 | 世界圖書(shū)出版公司 | 裝????幀 | 平裝 |
作者:(英國(guó))監(jiān)凱維奇 (Zienkiewicz.O.C)
Preface
1. General problems in solid mechanics and non-linearity
1.1 Introduction
1.2 Small deformation solid mechanics problems
1.3 Variational forms for non-linear elasticity
1.4 Weak forms of governing equations
1.5 Concluding remarks
References
2. Galerkin method of approximation - irreducible and mixed forms
2.1 Introduction
2.2 Finite element approximation - Galerkin method
2.3 Numerical integration - quadrature
2.4 Non-linear transient and steady-state problems
2.5 Boundary conditions: non-linear problems
2.6 Mixed or irreducible forms
2.7 Non-linear quasi-harmonic field problems
2.8 Typical examples of transient non-linear calculations
2.9 Concluding remarks
References
3. Solution of non-linear algebraic equations
3.1 Introduction
3.2 Iterative techniques
3.3 General remarks - incremental and rate methods
References
4. Inelastic and non-linear materials
4.1 Introduction
4.2 Viscoelasticity - history dependence of deformation
4.3 Classical time-independent plasticity theory
4.4 Computation of stress increments
4.5 Isotropic plasticity models
4.6 Generalized plasticity
4.7 Some examples of plastic computation
4.8 Basic formulation of creep problems
4.9 Viscoplasticity - a generalization
4.10 Some special problems of brittle materials
4.11 Non-uniqueness and localization in elasto-plastic deformations
4.12 Non-linear quasi-harmonic field problems
4.13 Concluding remarks
References
5. Geometrically non-linear problems - finite deformation
5.1 Introduction
5.2 Governing equations
5.3 Variational description for finite deformation
5.4 Two-dimensional forms
5.5 A three-field, mixed finite deformation formulation
5.6 A mixed-enhanced finite deformation formulation
5.7 Forces dependent on deformation - pressure loads
5.8 Concluding remarks
References
6. Material constitution for finite deformation
6.1 Introduction
6.2 Isotropic elasticity
6.3 Isotropic viscoelasticity
6.4 Plasticity models
6.5 Incremental formulations
6.6 Rate constitutive models
6.7 Numerical examples
6.8 Concluding remarks
References
7. Treatment of constraints - contact and tied interfaces
7.1 Introduction
7.2 Node-node contact: Hertzian contact
7.3 Tied interfaces
7.4 Node-surface contact
7.5 Surface-surface contact
7.6 Numerical examples
7.7 Concluding remarks
References
8. Pseudo-rigid and rigid-flexible bodies
8.1 Introduction
8.2 Pseudo-rigid motions
8.3 Rigid motions
8.4 Connecting a rigid body to a flexible body
8.5 Multibody coupling by joints
8.6 Numerical examples References
References
9. Discrete element methods
9.1 Introduction
9.2 Early DEM formulations
9.3 Contact detection
9.4 Contact constraints and boundary conditions
9.5 Block deformability
9.6 Time integration for discrete element methods
9.7 Associated discontinuous modelling methodologies
9.8 Unifying aspects of discrete element methods
9.9 Concluding remarks
References
10. Structural mechanics problems in one dimension - rods
10.1 Introduction
10.2 Governing equations
10.3 Weak (Gaierkin) forms for rods
10.4 Finite element solution: Euler-Bernoulli rods
10.5 Finite element solution: Timoshenko rods
10.6 Forms without rotation parameters
10.7 Moment resisting frames
10.8 Concluding remarks
References
11. Plate bending approximation: thin (Kirchhoff) plates and C1 continuity requirements
11.1 Introduction
11.2 The plate problem: thick and thin formulations
11.3 Rectangular element with corner nodes (12 degrees of freedom)
11.4 Quadrilateral and parallelogram elements
11.5 Triangular element with corner nodes (9 degrees of freedom)
11.6 Triangular element of the simplest form (6 degrees of freedom)
11.7 The patch test - an analytical requirement
11.8 Numerical examples
11.9 General remarks
11.10 Singular shape functions for the simple triangular element
11.11 An I8 degree-of-freedom triangular element with conforming shape functions
11.12 Compatible quadrilateral elements
11.13 Quasi-conforming elemems
11.14 Hermitian rectangle shape function
11.15 The 21 and 18 degree-of-freedom triangle
11.16 Mixed formulations - general remarks
11.17 Hybrid plate elements
11.18 Discrete Kirchhoff constraints
11.19 Rotation-free elements
11.20 Inelastic material behaviour
11.21 Concluding remarks - which elements"para" label-module="para">
References
12. 'Thick' Reissner-Mindlin plates - irreducible and mixed formulations
12.1 Introduction
12.2 The irreducible formulation - reduced integration
12.3 Mixed formulation for thick plates
12.4 The patch test for plate bending elements
12.5 Elements with discrete collocation constraints
12.6 Elements with rotational bubble or enhanced modes
12.7 Linked interpolation - an improvement of accuracy
12.8 Discrete 'exact' thin plate limit
12.9 Performance of various 'thick' plate elements - limitations of thin plate theory
12.10 Inelastic material behaviour
12.11 Concluding remarks-adaptive refinement
References
13. Shells as an assembly of flat elements
13.1 Introduction
13.2 Stiffness of a plane element in local coordinates
13.3 Transformation to global coordinates and assembly of elements
13.4 Local direction cosines
13.5 'Drilling' rotational stiffness - 6 degree-of-freedom assembly
13.6 Elements with mid-side slope connections only
13.7 Choice of element
13.8 Practical examples
References
14. Curved rods and axisymmetric shells
14.1 Introduction
14.2 Straight element
14.3 Curved elements
14.4 Independent slope——displacement interpolation with penalty functions (thick or thin shell formulations)
References
15. Shells as a special case of three-dimensional analysis - Reissner-Mindlin assumptions
15.1 Introduction
15.2 Shell element with displacement and rotation parameters
15.3 Special case of axisymmetric, curved, thick shells
15.4 Special case of thick plates
……
16. Semi-analytical finite element processes - use of orthogonal functions
17. Non-linear structural problems - large displacement and instability
18. Multiscale modelling
19. Computer procedures for finite element analysis
Appendix A Isoparametric finite element approximations
Appendix B Invariants of second-order tensors
Author index
Subject index2100433B
出版社: 世界圖書(shū)出版公司; 第6版 (2009年1月1日)
平裝: 631頁(yè)
正文語(yǔ)種: 英語(yǔ)
開(kāi)本: 24
ISBN: 9787506292559
條形碼: 9787506292559
尺寸: 22.4 x 14.8 x 3 cm
重量: 821 g
工程力學(xué)與 結(jié)構(gòu)力學(xué) 有什么區(qū)別 結(jié)構(gòu)力學(xué)是 屬于 工程力學(xué)的嗎??
工程力學(xué)(engineering mechanics)工程科學(xué)中,力學(xué)是研究有關(guān)物質(zhì)宏觀運(yùn)動(dòng)規(guī)律及其應(yīng)用的科學(xué),在理論工作上,有時(shí)要用微觀的方法得出宏觀的物理性質(zhì)。工程給力學(xué)提出問(wèn)題,力學(xué)的研究成果改...
面筋和底筋貼在一起,原來(lái)設(shè)計(jì)的鋼筋不在位置,沒(méi)有起作用,結(jié)構(gòu)會(huì)開(kāi)裂。
結(jié)構(gòu)力學(xué) 位移法 急!?。?/a>
(參考同濟(jì)大學(xué)的朱慈勉編的結(jié)構(gòu)力學(xué)):桿端彎矩,轉(zhuǎn)角,弦轉(zhuǎn)角均以順時(shí)針為證(即線位移以使桿件順時(shí)針旋轉(zhuǎn)為正)。由牛頓第三定律,桿件對(duì)結(jié)點(diǎn)彎矩以逆時(shí)針為證。i指的是桿件線剛度,均取正號(hào)。至于外力作用的固...
《有限元方法固體力學(xué)和結(jié)構(gòu)力學(xué)(第6版)》is dedicated to our wives Helen and Mary Lou and our families for their support and patience during the preparation of this book,and also to all of our students and colleagues who over the years have contributed to our knowledge of the finite element method。 In particular we would like to mention Professor Eugenio Onate and his group at CIMNE for their help, encouragement and support during the preparation process。
格式:pdf
大?。?span id="ahuspuw" class="single-tag-height">2.3MB
頁(yè)數(shù): 3頁(yè)
評(píng)分: 4.6
在節(jié)理巖體中,隧洞的力學(xué)性質(zhì)主要取決于節(jié)理的性質(zhì),其最常用的數(shù)值分析方法是有限元分析方法。本文結(jié)合蓋下壩引水隧洞,考慮節(jié)理傾角、節(jié)理間距和水平測(cè)壓力系數(shù),建立有限元分析模型。計(jì)算結(jié)果表明,隧洞圍巖塑性擴(kuò)展區(qū)和變形沿節(jié)理方向大致呈對(duì)稱分布,且隧洞圍巖塑性的區(qū)范圍與古德曼(Goodman)圖解法的判別基本一致。節(jié)理傾角和間距對(duì)隧洞圍巖力學(xué)特性有明顯影響,但構(gòu)造應(yīng)力才是影響隧洞圍巖穩(wěn)定性的主導(dǎo)性因素。
格式:pdf
大?。?span id="is33xqm" class="single-tag-height">2.3MB
頁(yè)數(shù): 5頁(yè)
評(píng)分: 4.7
針對(duì)預(yù)制塊路面結(jié)構(gòu)特點(diǎn)建立力學(xué)分析模型,運(yùn)用數(shù)值分析軟件對(duì)其路表彎沉進(jìn)行計(jì)算,分析預(yù)制塊厚度、基層模量、基層厚度及土基模量對(duì)塊體路面結(jié)構(gòu)受力的影響。計(jì)算結(jié)果表明,隨著塊體厚度增加,路表計(jì)算彎沉逐漸減小;在塊體厚度相同的情況下,基層厚度越大,路表計(jì)算彎沉越小;基層底面的彎拉應(yīng)力隨土基模量增大而減小。
結(jié)構(gòu)力學(xué)是一門(mén)古老的學(xué)科,又是一門(mén)迅速發(fā)展的學(xué)科。新型工程材料和新型工程結(jié)構(gòu)的大量出現(xiàn),向結(jié)構(gòu)力學(xué)提供了新的研究?jī)?nèi)容并提出新的要求。計(jì)算機(jī)的發(fā)展,又為結(jié)構(gòu)力學(xué)提供了有力的計(jì)算工具。另一方面,結(jié)構(gòu)力學(xué)對(duì)數(shù)學(xué)及其他學(xué)科的發(fā)展也起了推動(dòng)作用。有限元法這一數(shù)學(xué)方法的出現(xiàn)和發(fā)展就和結(jié)構(gòu)力學(xué)的研究有密切關(guān)系。在固體力學(xué)領(lǐng)域中,材料力學(xué)給結(jié)構(gòu)力學(xué)提供了必要的基本知識(shí),彈性力學(xué)和塑性力學(xué)是結(jié)構(gòu)力學(xué)的理論基礎(chǔ)。另外,結(jié)構(gòu)力學(xué)與流體力學(xué)相結(jié)合形成邊緣學(xué)科——結(jié)構(gòu)流體彈性力學(xué)。
評(píng)定結(jié)構(gòu)的優(yōu)劣,從力學(xué)角度看,主要是結(jié)構(gòu)的強(qiáng)度和剛度。工程結(jié)構(gòu)設(shè)計(jì)既要保證結(jié)構(gòu)有足夠的強(qiáng)度,又要保證它有足夠的剛度。強(qiáng)度不夠,結(jié)構(gòu)容易破壞;剛度不夠,結(jié)構(gòu)容易皺損,或出現(xiàn)較大的振動(dòng),或產(chǎn)生較大的變形。皺損能夠?qū)е陆Y(jié)構(gòu)的變形破壞,振動(dòng)能夠縮短結(jié)構(gòu)的使用壽命,皺損、振動(dòng)、變形都會(huì)影響結(jié)構(gòu)的使用性能,例如,降低機(jī)床的加工精度或減低控制系統(tǒng)的效率等。
觀察自然界中的天然結(jié)構(gòu),如植物的根、莖和葉,動(dòng)物的骨骼,蛋類的外殼,可以發(fā)現(xiàn)它們的強(qiáng)度和剛度不僅與材料有關(guān),而且和它們的造型有密切的關(guān)系。很多工程結(jié)構(gòu)是受到天然結(jié)構(gòu)的啟發(fā)而創(chuàng)制出來(lái)的。人們?cè)诮Y(jié)構(gòu)力學(xué)研究的基礎(chǔ)上,不斷創(chuàng)造出新的結(jié)構(gòu)造型。加勁結(jié)構(gòu)(見(jiàn)加勁板殼)、夾層結(jié)構(gòu)(見(jiàn)夾層板殼)等都是強(qiáng)度和剛度比較高的結(jié)構(gòu)。結(jié)構(gòu)設(shè)計(jì)不僅要考慮結(jié)構(gòu)的強(qiáng)度和剛度,還要做到用料省、重量輕。減輕重量對(duì)某些工程尤為重要,如減輕飛機(jī)的重量就可以使飛機(jī)航程遠(yuǎn)、上升快、速度大、能耗低。
結(jié)構(gòu)力學(xué)——靜定結(jié)構(gòu)力學(xué)課程是一門(mén)理論與實(shí)踐相結(jié)合的課程,通過(guò)對(duì)幾何構(gòu)造分析、靜定結(jié)構(gòu)的受力分析、虛功原理與結(jié)構(gòu)位移計(jì)算等內(nèi)容的學(xué)習(xí),使學(xué)習(xí)者具備對(duì)靜定結(jié)構(gòu)進(jìn)行內(nèi)力和位移計(jì)算的能力,以及自學(xué)和閱讀結(jié)構(gòu)力學(xué)教學(xué)參考書(shū)的能力。
結(jié)構(gòu)力學(xué)——靜定結(jié)構(gòu)力學(xué)課程適合土木工程、水利類工程等專業(yè)學(xué)習(xí)。
2019年1月8日,結(jié)構(gòu)力學(xué)——靜定結(jié)構(gòu)力學(xué)課程被中華人民共和國(guó)教育部認(rèn)定為“國(guó)家精品在線開(kāi)放課程”。